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QUANTITATIVE MODELING AND ANALYSIS IN

ENVIRONMENTAL STUDIES

Donald P . Gaver
Department of Operations Research

Naval Postgraduate School
Monterey, CA

93943

When you can measure what you are speaking about, and express it in
numbers, you know something about it/ but when you cannot measure it, when you
cannot express it in numbers, your knowledge is of a meager and unsatisfactory
kind: it may be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science.

William Thompson
Lord Kelvin

"Art is the lie that helps us see the truth, " said Picasso, and the same
can be said of modelling. On seeing a Picasso sculpture of a goat, we are
amazed that his caricature seems more goatlike than the real animal, and we
gain a much stronger feeling for "goatness." Similarly, a good mathematical
model — though distorted and hence "wrong" like any simplified representation
of reality — will reveal some essential components of a complex phenomenon.

Lee A. Segel

The mathematicians are a sort of Frenchmen: when you talk to them, they
immediately translate it into their own language, and right away it is
something utterly different.

Goethe

Key Words: systems, mathematical models, groundwater models, exposure models,
dose-response models, pharmacokinetics, pharmacodynamics cancer models, model
validation, risk assessment



1 . INTRODUCTION

Most biological systems are complex, being made up of many subtly

purposeful, interacting parts. Whenever such complex systems interact with

each other or the environment it is useful, or even essential, to introduce a

simplified way of thinking about and expressing the possible outcomes. To do

so is to employ a model. In this chapter we discuss and illustrate some of the

types of mathematical models that have been developed and found informative by

those who study and attempt to control biological and physical environmental

systems. In particular, we examine mathematical models for the interaction,

eventual disposition or fate, and effect, of biological and chemical agents

that have been released into the physical environment by mankind, have

dispersed and accumulated, are potentially harmful to the natural environment,

including mankind, and hence are candidates for remediation.

Biological scientists are more accustomed to work with and think in terms

of physical biological models, e.g. laboratory animals, than with the

quantitative mathematical models that are our topic. However, the use of

mathematical models in biology has a long and honorable history: early

examples include population growth models by Volterra and Lotka, and the

genetic models of Mendel, Fisher and others. An excellent single reference is

the book of Murray (1980) . Statistical models that represent individual

physical variations, such as in height, weight, blood pressure and pulse rate

and many other physiological characteristics, are in routine use, as are

models that describe human response to doses of drugs, medicines, or exposure

to toxic agents in various forms and concentrations. These latter will be

reviewed in this chapter.



Environmental problems encountered by mankind typically involve control

of the production and emission, dispersion, interactions, location, fates, and

effects of numerous biological, chemical, and physical (such as ionizing

radiation) components within the environment. Understanding and control of the

many interrelated processes involved is well beyond the scope of simple field

experimentation alone, just as it transcends the boundaries of the single

traditional scientific disciplines and technologies. An overall logical

framework is needed to assemble the various system components so that options

can be expeditiously compared on the bases of costs and effectiveness.

Mathematical, often computer-activated, models are a useful, and increasingly

utilized, tool for economically exploring the cost and effectiveness of

different options for environmental usage and control. This exploration makes

use of scientific information and available data pertinent to the particular

situations of concern, for example at those sites that are candidates for

remediation. In addition, modeling efforts now guide the collection of

suitable meaningful data, and help to organize and focus their summary and

analysis. Such focusing is accomplished by initially combining data and

theoretical understanding from the various relevant scientific disciplines and

technologies in an attempt to address meaningful questions that are generally,

if simplistically, of the form "If option X is used for remediating hazardous

waste site Y, what will be the cost, how long will be required, and what will

be the change in the habitability, or risk, associated with the site?" It is

increasingly recognized that there is considerable uncertainty attached to

quantitative responses of the types described. Thorough and careful appraisal



and communication of that uncertainty to policy makers and the public is the

responsibility of the growing fields of risk analysis and risk communication.

This chapter considers several of the generic modeling areas encountered

in environmental studies. No attempt is made to be detailed or encyclopedic.

We attempt to present the flavor of the area and to put the reader into

contact with relevant literature and references thereto. The aim is to provide

an overview of models for certain of the many major components of a risk

characterization analysis or study.

A graphical flow chart or influence diagram appears as Figure 1.

INFLUENCE DIAGRAM
FOR

FLOW OF CONTAMINANTS
(EXTERNAL TO CLIENTS)

Figure 1



The links between the round nodes show the direction of influence of

contaminants that enter the environmental system and are transported to such

client populations as humans, animals, and plants. We use a dotted arrow to

denote the influence of client populations, such as humans, upon the

contaminant sources. Needless to say, models for the behavior of all sources

and links will not be exhaustively discussed in this chapter.

Section 2 outlines modeling issues connected with groundwater, a vital

resource, and also a primary medium of transport of pollutants. The history of

models in this area is long, and the subject is highly technical, requiring

the intellectual tools of physics and engineering, applied mathematics,

numerical analysis and statistics, as well as chemistry and biology.

Groundwater is one of the many media by which human beings, plants and animals

come into contact with chemical and biological pollutants and toxicants.

Maintenance of its quality is a matter of primary concern to the United States

Environmental Protection Agency.

In Section 3 we consider compartmental and physiologically-based

pharmacokinetic models for the description of the transport patterns of

concentration of toxic agents, and also medicines, between and within bodily

organs. Thus, given exposure to various chemicals via drinking, cooking and

washing water (but also through air, food, etc.) it is natural to ask about

their ultimate concentrations in the blood that enters such organs as the

liver or kidney. Pharmacokinetic models describe the time-dependent

relationship of that concentration, or dosage, in terms of exposure routes to

the host organism, e.g. a human being, and the scheme by which blood flows,

and its contents modified, in that organism on the way to target organs.



Intake from groundwater provides one of the many exposure routes referred to

above

.

Section 4 provides an introductory account of the active new field of

exposure monitoring and modeling. Reflection suggests that careful effort is

needed to relate the origin and subsequent transport of pollutants, e.g.

through groundwater, to the exposure and dosage of humans and other endpoints,

such as the DNA adducts discussed in another chapter.

The topic of Section 5 is that of dose-response models. Such models

connect dosage levels, i.e. concentrations of toxic chemicals or biological

agents, to response at the organ, or host organism, level; response may be in

terms such as illness or death of the organism or modification of an organ,

i.e. the proliferation of cells or the conversion of healthy cells to

precancerous or cancerous. Such events are called endpoints; current attention

appears to be focused on increasingly more biologically basic, and subtle,

endpoints. The mathematical models that have been proposed reflect biological

phenomena to as great a degree as possible, but that degree is limited in

practice by the complexity and imperfect knowledge of the variety of

•biological processes by which alien substances actually alter organs. Figure 2

describes the interactions envisioned, and modeled, in the categories alluded

to above.

Section 6 discusses some of the issues associated with model-based risk

assessment . The challenge is to represent multi-stage organ alteration

processes credibly by models that are simple enough to be estimated from

available and relevant data. Major interest focuses on the effects of chemical



INFLUENCE DIAGRAM
FOR

FLOW OF CONTAMINANTS
(INTERNAL TO HUMAN AND ANIMAL CLIENTS)

Figure 2

or biological agents on human beings. Often dosages of such agents are low,

but prolonged, although response to sudden impulse dosage can be of concern,

e.g. that caused by accidental spill. Direct experimental human response

information is seldom available, so indication of effect is often sought in

animal experimentation; animal includes rodents, but also fish, frog embryo,

and many other biological models. For reasons of economy and time such

experimentation are often done at relatively high doses. It is current

practice to extrapolate such animal data to indicate the animal responses at

low doses, and across species to a corresponding response in man. The

extrapolations are typically made in terms of mathematical models. Such

assessments are uncertain and vulnerable for various reasons, and the results

have been questioned. The techniques that have been proposed to circumvent the

criticisms seem currently to be two-fold: to increase the size of the animal



experiments, thus allowing more confident determination of low-dose effects,

and to improve upon the biological credibility of the basic models. However,

very large animal studies are costly, and hence rare. References are given

later to the current discussion on extrapolation problems.

Section 7 outlines, in two epidemiologic case studies, issues that were

confronted when quantitative approaches, including the use of mathematical and

statistical models, were employed to analyze risk to humans exposed to

chemically polluted drinking water. Techniques are discussed, as are problems

associated with interpretation of results.

The various sections described above ultimately pertain to risk

assessment , characterization, and analysis . The task of risk assessment,

characterization, analysis, and management, is to estimate the effect on

environmental clients, e.g. humankind but not exclusively so, of admission of

certain chemicals and biological agents into the environmental system. Such

admission may be appealing in many ways, for instance economically, but the

appeal must be balanced against possible adverse effects. Risk analysis

attempts to quantify such effects in an atmosphere of considerable

uncertainty. In each of the sections above we point to efforts made to

quantify the uncertainties inherent in the modeling efforts and their

applications. Numerous references are presented to supplement the discussion.

There remains much to be done to reduce and characterize such uncertainty.

2 . MODELING GROUNDWATER: A SPECIFIC SYSTEM RELEVANT TO REMEDIATION ISSUES

Water is essential for sustaining life on Earth. It is also the medium

that transports many of the pollutants that are introduced into the natural

environment. Groundwater, which is the earth surface's source of most of the



water that humans come into contact with, is an element of the hydrosphere,

which itself acts as a system. The latter encompasses all waters above, on,

and below the surface of the earth. Water moves cyclically through this closed

system, being exchanged from state to state by evaporation, precipitation,

plant transpiration and other processes including human usage and consumption:

i.e. it enters the groundwater subsystem in recharge zones and leaves in

discharge areas. While doing so it is consumed by humans, plants, and animals,

contributes to disposing of their waste products, and is faced with

increasingly many demands as a medium for disposing of agricultural and

technological byproducts.

Groundwater modeling refers to the description, in quantitative numerical

terms, of the flow, and residence or storage, of water into, and out of,

regions near the surface of the earth. Although such flow is of natural origin

it is affected by man's activities such as pumping out of and into those

regions. See van der Heijde et al. (1988), Schwartz et al. (1990), Anderson

and Woessner (1992) , and numerous articles in the journal Water Resources

Research and elsewhere. The objectives of modeling are both to build a

scientific basis for understanding the many interacting processes involved and

to provide specific information for managing an essential, scarce, resource.

Public concern is with the adequate supply of water for human consumption and

usage, and increasingly with the quality of that supply. Models help to inform

policy makers of the effects of regulations placed on water usage for direct

human consumption and waste disposal, and also on the impacts of usage for

waste disposal by the agricultural, manufacturing, electric power,



transportation and defense subsystems of the economy. They provide information

concerning the status and cost-effectiveness of remediation efforts.

Models for such purposes use geological, chemical and biological science

and principles of fluid mechanics to describe the time and spatially varying

and interacting flows of relevant fluids: fresh water in aquifer containment,

but also, where relevant, the extent of intruding salt water, petroleum, and

solutions of chemicals such as fertilizers and pesticides, radionuclides, and

other items. Specialized multicomponent models are used to assess, the

chemical-biological content of groundwater: important classes are solute

transport models and pollutant transformation and degradation models. In

these, the processes of change of transported or resident pollutants are

described and predicted, using appropriate chemical and biological science. An

important objective is to track the availability for consumption by mankind of

various substances that enter the water cycle at various remote points and

reach aquifers that yield drinking water.

Since groundwater carries contaminants, its motion is of primary

importance. That motion is best understood and mathematically modeled in fully

saturated regions inhabited by porous materials such as rock or soil. Aquifers

are such regions: they store water accessed by wells that furnish water for

consumption. Widely accepted mathematical models for aquifer flow are based on

physical conservation laws that govern fluid flow; these models are called the

Navier-Stokes equations. For use in the porous media groundwater environment

these in turn may be simplified by use of the semi-empirical Darcy law; see

Schwartz et al. (1990), Chapter 3, for a discussion of the extent of this

law's applicability. The result is a linear second-order partial differential

10



equation for pressure head that involves a hydraulic conductivity "parameter"

(actually a function of space as that reflects regional variation) , a storage

term, and a source-sink term. The latter represents natural flow into and out

of the aquifer via, say, rainfall, plus the influence of pumping for direct

usage plus recycling remediation, i.e. the recharge and discharge areas

previously mentioned. This setup is called the porous media model. Given these

data requirements, plus boundary and initial conditions, partial differential

equations can be solved numerically to describe pressure head as a function of

space and time throughout the aquifer. From head information, flow velocities

can be derived, and these allow prediction of the concentration of a dissolved

chemical solute at a specified place and time in an aquifer, since the

chemical solution is regarded as being largely transported by the process of

advection, i.e. flow along with the general groundwater. In addition, the

solute disperses; the dispersion flux is sometimes viewed as depending on the

current concentration gradient (Fick's law). Further models are needed, and to

some extent available, for describing chemical reactions, abiotic

transformation, and biological processes between many possible inorganic and

organic solute types; see Schwartz et al. (1990), Chapter 4. Basic spatial and

temporal change in solute concentration is also modeled by second-order

partial differential equations, coefficients of which depend on the flow

rates, obtained as sketched earlier, and on local dispersivities.

Despite the availability of the fundamental fluid-mechanical science on

which modeling of flows in saturated media can be based, various

approximations are required in practice. Hydraulic conductivity "parameters"

may not be conveniently nearly constant, much less well-known, over the entire

11



region of interest, so that in practice regions are divided into

hydrostratigraphic units (regions of similar hydrogeological properties)

within each of which nearly the same parameter values are assumed to prevail;

see Anderson and Woessner (1992), Chapter 3, for practical details. It has

been noted that good prediction of dispersive effects depends on accurate

calculation of the spatially varying velocity field to a high degree of

resolution, which is difficult because of lack of information concerning

influential local variations in hydraulic conductivity. It is thus difficult

to make highly accurate predictions of contaminant concentration at various

locations in an aquifer, e.g. near a well location.

Contaminants typically enter the saturated regions addressed earlier

through unsaturated zones, e.g. through soil, possibly from near-surface

disposal, or spills, of contaminants. The type of liquid saturation in these

zones is water or non-aqueous-phase liquids, plus gases. Although Darcy's law

remains approximately applicable in unsaturated flow the hydraulic

conductivity parameter, K, is now a function of the head, so the partial

differential equation becomes non-linear, increasing difficulties with

numerical solutions. Several approximate analytical forms have been proposed

to describe K - K(h); see Schwartz et al. (1990), Chapter 3. Furthermore,

unsteady and transient flows in the unsaturated zones are the rule, whereas

the flow in saturated regions tends to be steady. These features further

complicate model parameter specification and equation solution. Transport of

contaminants in unsaturated regions also is subject to a greater number of

physical and biological processes that are interactive, complex, and less

well-understood than are those in the saturated regions.

12



Still more serious complications arise when modeling the flow of water

and dissolved contaminants through rocky media that is extensively fractured.

Such fractures form haphazardly placed channels with apertures of varying

sizes, and hence flow capacities. The hydraulic conductivities of fractured

media may actually change with applied stress, so that pumping from a well in

such regions can alter the effective porosity of the region changing its

flows. Various modeling options have been employed to handle the fractured-

media flow problem. A first approach is to make a continuum approximation: one

represents fractured media flow as that in an equivalent porous media,

defining a hydraulic conductivity parameter to be incorporated into the

aforementioned partial differential equation; this is now called an equivalent

porous media model. This approach is inaccurate if the region is connected but

very sparsely fractured; i.e. if a small local region is being considered. A

second approach assumes dual porosity, meaning that the porosities of the rock

matrix and of the fractures are separately identified, as are flows within and

between rock and fractures; the model is now two coupled partial differential

equations and is referred to as a dual porous media model. Finally, if

fracture flow predominates (rock is relatively impermeable) , the flow is

modeled as occurring through a network; this is the discrete fracture model.

Practical uncertainties exist as to an actual fracture configuration, which

add to the uncertainty of prediction of flows or water plus transported

pollutants.

Various methods of ascertaining properties of underground regions are in

use so that roughly appropriate choices of flow and transport models can be

made. These include evidence from bore holes, the application of kriging

13



(interpolation between spatially separated observations, see Cressie (1991)),

use of tracer information, inverse problem solution (inference of concealed

hydraulic parameters from head and flow observation), and others; see Anderson

and Woessner (1992), Chapter 8, on the calibration process, wherein a model is

adjusted to fit available data and the success of the fit is examined.

Uncertainty, Variability and Stochastic Models

Sizable heterogeneity and irregularity of media through which water —
and contaminants — pass and are stored has prompted the development of

probabilistic or stochastic (=chance=random) models to supplement the earlier

deterministic versions. For example, Gelhar (1986) treats the logarithm of the

hydraulic conductivity, K, as a spatially correlated Gaussian random process,

which he then uses to characterize the induced head statistics, e.g. its

variance. He utilizes mathematical techniques to deduce that "the large-scale

transmissivity (hydraulic conductivity) of an aquifer is obtained by averaging

the logarithms of local transmissivities that are measured." It is stated that

the same approach can be used to evaluate an effective large-scale dispersion

coefficient (the "macrodispersivity") relevant to solute transport. More

recent work by Glimm and Sharp (1991), and by Zhang (1992), expand upon the

characterizations of heterogeneous porous media — the habitat of

groundwater — as general random fields. The assumption of the log-Gaussian

(or log normal) distribution for hydraulic conductivity goes back at least to

Freeze (1975) . It is legitimate to ask about the sensitivity of results based

on this approach to its assumptions, i.e. that of Gaussian distributions, for

in other areas there occur extensively tail-dispersed and otherwise non-

Gaussian distributions.

14



Note that randomness may enter the groundwater picture not only by way of

media characterization, as above, but through representation of the recharge

process, which is influenced by the irregular occurrence of rain, snow, and

heat. Chemical and biological processes occurring in the subsurface

environment are also so affected. In summary, significant fluctuation and

variability (sometimes called structural randomness) may well occur in media,

recharge and discharge, and in the properties of the items transported

therein. Early models ignored such effects: more modern models include such

realisms.

An additional component of uncertainty or randomness results from errors

inherent in the measurement process for determining properties of the media

and inputs and outputs at particular sites from observations; this component

may be called measurement error or statistical randomness. In the literature,

see Anderson and Woessner (1992) , measurement errors are also frequently

characterized by a Gaussian or normal distribution: the familiar wbell-shaped

curve." However, an extensive statistical literature on robustness suggests

caution; see Tukey (1984), p. 614. In particular, care should be taken in the

application of ordinary least-squares regression techniques: these tend to be

undesirably responsive to isolated outlying observations. Such comments

potentially apply to kriging, a technique for smoothing and interpolating

noisy spatial observations that is increasingly applied in groundwater

studies. Cressie (1991) considers robust kriging, a technique that down-

weights isolated maverick observations that are the result of aberrant

measurements.

15



Since both structural randomness and random measurement errors seen

plausible and have been invoked, their blending in a Bayesian approach

suggests itself, see Berger (1985) . Such an approach is briefly mentioned by

Anderson and Woessner (1992) who refer to work by Freeze et al. (1990) .

Briefly, Bayesian theory (named for the Reverend Thomas Bayes, 1763), see

Berger (1985) , represents uncertainty in a physical or biological parameter by

calculating its probability distribution, the so-called posterior

distribution. The components of this distribution are a prior distribution,

which incorporates general information about the unknown value obtained from

other situations and expert judgment, as well as a likelihood function that

represents the information given by measurements on the specific situation of

concern. For the mechanics, see Berger (1985). The Bayesian methodology is

capable of formally incorporating information from other, similar, sites into

the estimation of properties of a site of current concern, as well as

measurements taken at the latter. The classical statistical approach omits

formal treatment of information other than that obtained at a particular site.

There apparently exist computer codes for carrying out such processes; several

references are given by Anderson and Woessner (1992), Chapter 8. A Bayes

version of kriging exists; for an account again see Cressie (1991)

.

Another approach to the uncertainty problems in the groundwater arena is

that of expert systems, or more generally artificial intelligence (Al) .

Several publications and expert system tools such as knowledge bases and

inference engines are referenced in Schwartz et al. (1990), Chapter 7. For a

way into Al and uncertainty ideas, see Pearl (1988)

.
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Remediation of contaminant content of groundwater is often attempted by

pumping fresh (low or uncontaminated) water into and out of aquifers in an

attempt to dilute and flush out existing contamination. The effectiveness of

this methodology depends upon the nature of the contaminant; if the

contaminants are multiphasic non-soluble (immiscible) and have been trapped in

pores of rocks or soils their removal by pumping technology is extremely slow;

see Travis (1992) .

3 . COMPARTMENT AND PHARMACOKINETIC MODELS

Models that envision either the physical environment or an animal or

human body as a collection of inter-linked but homogeneous compartments are

called compartment or pharmacokinetic models. They behave as follows: a

substance enters one or more compartments according to a specified time

pattern; once in the compartment it resides there for a characteristic time

before it changes form, disappears, or passes to another compartment, where

the process continues; cycling back and forth between compartments may occur.

The substance may in fact be a combination of more elementary substances. The

agent that carries the specified substance can be blood or other bodily

fluids, so the amount present is naturally expressed as a concentration. In

the case of animal or human body compartments, the modeler's goal may be to

predict the dosage and transformation of a medicine, drug, anesthesia, or

possibly toxin, at a particular organ, such as the liver. The varying rate at

which dosage is eventually administered to the target organ depends upon the

rate of substance entry into the blood stream, e.g. from the lung or stomach,

and thereafter on the rate of transfer within and between organs that precede

the target organ in natural order, and also on the blood flow rate. The term

17



pharmacokinetics is used to describe this process when the context is

generally biological. Classical pharmacokinetic models are expressed in terms

of systems of linear ordinary differential equations with constant

coefficients that reflect the rate at which concentration changes in the

various compartments. Physiologically-based pharmacokinetic models (PB,PK for

short) utilize physiological/biological interpretations of mechanism to

specify the equation coefficients, which may not be constant in concentration,

and may In fact be non-constant. PB,PK models are, theoretically, capable of

validly representing intraspecies biological responses, and to give promise of

useful interspecies extrapolations. See Bischoff (1987) for more details.

Quite recent work by Bois, Gelman, Jiang and Maszle (1994) has applied modern

Bayesian statistics to fit a pharmacokinetic-physiological toxicokinetic model

to assess fraction of tetracholoroethylene metabolized at a given dose level,

taking account of individual variability plus estimation uncertainty.

Analogous models can be used to describe the flow or transfer of

dissolved chemicals, pesticides or waste material from the earth's surface

through soil and rock to groundwater in aquifers. Presumably the predicted

concentrations of such items in, say drinking or washing water, which may be

understood as the output of an appropriate environmental component

(compartment) model, provide inputs to a pharmacokinetic (compartment) model

eventually describing the dosage of (some transformation of) the dissolved and

transported chemical to a particular target organ within a human body or

another organism. This dosage could, in turn, provide input to a

pharmacodynamic model, e.g. a multi-hit or clonal expansion model, cf.

Moolgavkar and Luebeck (1990), or Portier (1989) to predict the occurrence of

18



carcinogenetic material in an animal or human organism. A nice overview of

PB,PK compartment models is given by Andersen (1987). A list of open problems

awaiting solution to provide improved risk analysis tools is in Rhomberg

(1988) . More detail and further references occur in Section 5, on dose-

response models.

PB,PK models have been tested empirically by several groups of

investigators. For example, see Andersen, Clewell, Gargas, Smith, and Reitz

(1987), Reitz, Nolan, and Schumann (1987), who studied methylene chloride, and

Travis, Quillen, and Arms (1990) who examined benzene. In both of these latter

cases data from rats, mice and humans were modeled with the objective of

explaining or relating concentrations of items in question (methylene chloride

and benzene respectively) and their metabolites in target organs. These

studies have as an objective the reconciliation of various empirical

investigations on the basis of plausible biological mechanism.

The strategy currently followed in applications of PB,PK thinking is,

first, to identify physiologically meaningful compartments; in the methylene

chloride case four were used: liver (the primary metabolizer) , fat, organs

such as brain, heart, kidney, other viscera, and muscle; in the benzene case

bone marrow was added, for it and liver are the primary organs that metabolize

benzene. The differential equation coefficient values are then specified from

previous related experimental studies. Explicit recognition is given to

nonlinear process-saturation terms such as the Michaelis-Menton expression

used in modeling metabolism and also to gastric absorption rate as a function

of dose level. In Travis et al. (1990) the Michaelis-Menton parameters, Vmax

and Km were actually determined by fitting the model to existing data. After
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the model is fully specified it is asked to explain data on concentrations of

the dosed material or its metabolites at target organs. In both Reitz et al.

(1987) and Travis et al. (1990) objectives are predictions of responses, i.e.

concentration in an important organ, or other endpoints, as a function of

time. In general, agreement appears qualitatively reasonable to good. However,

some such published comparisons appear to depend on parameter values obtained

from the data being described, so the term "prediction" is perhaps a bit

generous. To test true predictive capability of a model it would be necessary

to apply it to an independent data set : apparently this has been done in some

cases with reasonable success.

A good modern introduction to pharmacokinetic modeling is Gillette and

Jollow (1987) . There the reader will find several references to validation of

models; although details are not given they can presumably be obtained from

the authors.

Uncertainty, Variability and Stochastic Models

It is clear that the response of even quite similar organisms to

controlled doses of a medicine or possible toxin will vary somewhat

inexplicably, suggesting the need for models that enhance the original,

deterministic, ordinary-differential-equation setups. An initial step has been

to provide or adapt models to express concentrations as randomly varying

around a mean. Thus the models represent the number of elementary particles of

a foreign element, e.g. a chemical, in a compartment as fluctuating randomly,

and often independently, governed by fixed (and known) transition

probabilities. This phenomenon can be called outcome variability. Later

approaches capitalized on the large numbers (or particles) involved by using
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continuous (diffusion) approximations, cf . Lehoczky and Gaver (1977) . The

latter approach has the advantage of close contact with the initial

deterministic models (the latter gives precisely the mean of the later

diffusion approximation) and of furnishing a description of random fluctuation

around that mean that is the familiar Gaussian. However, the scale of random

fluctuation is on the order of the square root of the mean, which may be

smaller than that observed in practice. Outcome variability can be negligible

in practice.

A second, and possibly dominant, source of variability is in the

parameters of the differential equation themselves: it is plausible that these

vary in time within individual organisms, and, possibly more importantly,

between organisms. This variability is entirely analogous to the structural

variability mentioned in connection to groundwater in models in Section 2.

Various researchers have incorporated the between-organism component into

analyses: Sheiner and Beal (1980) have provided NONMEM (nonlinear Mixed

Effects Model) which computes an approximate joint Bayesian posterior

distribution of the various parameters in a given compartment model (this is

treated as log-multivariate Gauss/normal) and thence to compute the

(posterior-based) estimate of, say, a concentration at a target organ; PREDPP

is a package used by NONMEM for this purpose. The latter calculation is

accomplished either by Monte Carlo simulation ("bootstrapping") from the above

parameter posterior or by an approximate numerical calculation. Other

investigators, e.g. Farrar, et al. (1989), have taken the bootstrapping route

as well. A further step, taken by some investigators, is to invoke Bayesian

formalism to infer, predict, and control (in the case of a drug or anesthesia)
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the concentration of a substance at a target organ in a particular individual,

in the face of uncertainty as to how that individual is processing the

substance input, and allowing for measurement error; see Bois et al. (1994).

The above approaches all treat model coefficients as constants that are

picked from a population described by a distribution but thereafter held

fixed. To date it appears that little successful work has been done to

characterize the effect of random temporal parameter variability on target

concentration variation in an individual organ, although such a model might

well be more realistic than those discussed. Models exist in which parameters

change because of the presence of pharmaceuticals or toxins; see Jackson

(1993) and Gaver, Jacobs, and Carpenter (1994)

.

Although a considerable amount of effort has been devoted to modeling

uncertainty in pharmacokinetic compartment model parameters, very few of the

results seem to have been adapted for the use of compartment modelers in the

environmental sciences. See MacKay and Peterson (1991) who are concerned with

modeling the environmental fate of organic chemicals (pesticides, PCBs, wood

preservatives, incineration byproducts, etc.) that, purposefully or

inadvertently, enter the environment and proceed through soil, water and air

to expose humans, plants and animals. The effect of uncertainties in the

various parameters (transport and partition) can be addressed by the

resampling or bootstrapping approach of Efron and Tibshirani (1986), assuming

existence of information concerning their distribution. The same is true in

compartment-model studies of persistent contaminants that concentrate in food

chains; see Moriarty (1984), who fits a three-compartment model for dieldrin
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absorption in tissue; stochastic models are mentioned in passing but are not

actually applied.

4 . HUMAN EXPOSURE MODELING AND ANALYSIS

Environmental regulation is intended to protect human public health and

welfare from adverse effects of environmental pollution. Environmental

remediation involves reduction of environmental pollution levels to or below

some tolerable level, and the maintenance of that condition. Thus formal

regulatory demands and common sense suggest that the level of pollutant to

which actual human beings are exposed when in a neighborhood of one or more

polluting sources is of direct relevance. Consequences of experiencing various

levels of different pollutants via various exposure routes (air, water, food,

soil) must often be assessed by models: candidates are physiologically-based

pharmacokinetic models that predict the within-organism transfer of polluting

chemicals by way of intake from external sources to organs; thereafter one or

more dose-response, or pharmacodynamic models (see next section) are invoked

to convert organ-level dosage to biological responses or endpoints such as the

occurrence of carcinogenic material or other disease forms.

The importance of quantifying the link between the presence of pollutants

in a medium and resulting human exposure has stimulated the development and

use of a number of computer models. In 1987 the Environmental Protection

Agency established the Center for Exposure Assessment Modeling (CEAM) in

Athens, Georgia. According to Ambrose and Barnwell (1989), that office

supplies "predictive exposure assessment techniques for aquatic, atmospheric,

terrestrial, and multimedia pathways for organic chemicals and metals"; the

techniques are in the form of computer modeling packages that are made
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available to users on diskettes. A general description of a number of the

available models is contained in Ambrose and Barnwell (1989) . Such models are

generally descriptive of pollutant concentrations in the physical environment

but do not appear to make a quantitative connection between such

concentrations and the actual uptake of such pollutants by humans, or other

inhabitants of the surrounding ecological system.

Efforts to quantitatively monitor individual human exposure to

pollutants, e.g. within particular closed spaces or near hazardous sites, are

described by Ott (1990) . The approach has been called Total Human Exposure

(THE). Briefly, there are two versions of THE. In the direct approach a

probability sample of individuals is selected that is representative of a

particular exposed population. With the aid of personal exposure meters

carried by those sampled, supplemented by their activity diaries, the attempt

is made to relate individual exposure to sources of pollution in a great many

media. In addition, the body burden of various pollutants is measured. The

results from the probability sample can be applied to make statistical

inferences concerning population exposure or dose. The latter data can be used

as input to dose-response models, see Section 5 to follow, so as to infer that

population's risk. The direct exposure monitoring approach has been called the

Total Exposure Assessment Methodology (TEAM) ; apparently a number of TEAM

field studies have been conducted in various cities. Among the reported

findings is that the number of indoor sources of toxic agents exceeds the

number of outdoor sources; the dosage levels indoors can also be much higher

than those outdoors owing to exposure to cleaning fluids, paints and CO2 in

enclosed conditions such as homes and offices.
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The indirect approach to exposure assessment is more truly exposure

modeling. Field data serve as input to characterize pollutant concentrations

in various microenvironments (locations of homogeneous pollutant

concentration) and the randomly varying times spent in these by individuals;

see Duan (1991) . Such models can possibly be used to augment direct exposure

assessments to predict human exposure under changed conditions. For more

references and details see Ott (1990) .

5 . DOSE-RESPONSE MODELS

Suppose a dose of a single, or specified combination, of chemicals is

imbibed by a human subject, or a wild or laboratory animal. It is of interest

to relate the response of such subjects to the type and level or concentration

of the dose received. This activity is called dose-response modeling, and is

an important part of a quantitative risk assessment.

It is usual to assess individual response in binary terms: either a

subject has reached some specified endpoint, e.g. exhibited tumors of a

certain type in a target organ at time of observation (in animal cases,

sacrifice), or it has not. Less frequently, more complicated responses are

considered; e.g. Zhu, Krewski and Ross (1992), in a developmental toxicology

context, record and analyze multiple responses of female rats and mice (and

their offspring) exposed to the toxin, 2,4,5-T. We concentrate here on binary

responses, although information may well be lost in some cases by doing so.

If individuals subjected to a specified dosage level are representative

of a given population some will, and the remainder will not, exhibit a

positive response. It is useful to think of the fraction that do respond as an

estimate of the probability that a random number of the population will
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respond. The relationship between dosage level or concentration, d, and the

probability of a particular response as a function of d, i.e. P(d) will

typically appear as shown below in Figure 3:

P(d)

1 Threshold

Figure 3

One anticipates that the probability of a positive response, such as

exhibition of one or more tumors in the liver after sacrifice, will be

monotonically increasing as depicted, at least in large enough samples so that

random fluctuations are small. However, reversals do occur and may have

biological significance, i.e. are not individual sampling variations.

Mathematical representations of dose-response relationships are of two

general types. The simple statistical type selects a standard statistical

model such as the Gaussian/normal "bell-shaped curve", or, alternatively, the

so-called Weibull distribution first introduced as a descriptor of mechanical

system failure time, and converts that model into a dose-response model. A

good introduction to such setups is provided by Kalbfleisch and Prentice

(1980), who also discuss the fitting of such models to data, accounting for

complications that occur when data are missing (test animals have died before
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the planned time of sacrifice), and additional data are available to adjust

for differences in individual age, gender, or environmental conditions such as

temperature. A particularly effective and popular model of this latter type is

the so-called Cox regression model; see Cox (1972, 1984)

.

A conceptually appealing alternative and supplement to the simple

statistical models are called pharmacodynamic models; these attempt to

mathematically represent some of the detailed biological mechanisms that

influence organ response. Excellent examples are the multistage cell-

proliferation clonal expansion models described by Moolgavkar and Venzon

(1979), Moolgavkar and Luebeck (1991), and Kopp-Schneider, Portier and Rippman

(1991) . The importance of cell proliferation in the cancer-development process

has been noted early; a modern account is by Cohen, Portier, and Ellwein

(1991), and a deterministic dynamic simulation model has been presented by

Ellwein and Cohen (1992) . There are many papers in this general area. See also

Hart et al. 1986, p. 217. All of the above models explicitly consider the

following multistage process that is currently thought to lead to cancerous

tumors: first, an initiator event occurs randomly at single-cell level and

causes permanent genetic damage. After such an event, cell division yields an

increasing number of precancerous clones. The clones so generated may

independently die and replicate. Promoter events, usually considered to be a

second gene-damaging event, may lead to the initiated cells becoming a

cancerous lesion or tumor, a typical dose-response endpoint.

The above types of models have been converted to dose-response models by

various authors. The procedure has generally been to express initiation,

proliferation and completion rates as linear functions of dosages, somehow
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expressed (any, but often non-decreasing positive, function of time-dependent

concentration is presumably minimally acceptable); see Crump and Howe (1984),

Murdoch and Krewski (1988), Kodell, Krewski, and Zielinski (1991) for example.

All of these approaches resemble each other in that they postulate a simple

mathematical relationship between dose or exposure and biologically-based

model parameters such as the aforementioned rates. While the above step is

natural it seems possible that models that more faithfully reflect the actual

mechanistic interactions between potential toxic agents and cells at a

molecular level could have increased credibility over wider ranges of dosage.

In particular, the low-dose and across-species response is of interest in risk

assessment; see below; see Portier (1989), especially pp. 256-259. One

approach in this general direction has been reported by Freedman and Shukla

(1991), wherein references to other related work are given.

An alternative class of biologically and physiologically based models are

those that strive to represent the behavior of some distinguished organ,

particularly when the latter is subject to toxic insult. A well-studied class

concerns the liver; a good overview of the "distributed parallel tube" liver

model (and its predecessors and competitors) is given by Robinson (1992) . Such

models view the liver as a collection of enzyme-lined tubes through which

blood flows carrying a substrate to be removed by enzyme action. Natural

functional heterogeneities in the liver require formal mathematical

recognition: this can be accomplished by the addition of one model parameter

in a partially randomized setup.
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6 . RISK ASSESSMENT

An important application for the models discussed here is to quantitative

risk assessment. The general objective of risk assessment is to estimate the

type and incidence of detrimental biological effects associated with the

introduction of various levels of pollutants into the environment. Of major

but not exclusive concern are the biological effects upon human beings; the

term pollutants refers not only to chemical and biological substances but also

to ionizing and electromagnetic radiation and other physical agents, and to

any combinations thereof. The term "biological effects" has often referred to

cancer, but should also include genetic and developmental defects and other

detrimental outcomes including psychological and behavioral abnormalities. Of

course all such outcomes can in principle occur, in various combinations and

severities, depending upon the exposure, and the nature and current status of

the recipient of that exposure.

The risk attributable to a particular agent or substance can be thought

of as a combination of the hazard or detrimental effect, i.e. toxicity, of

that agent, given a level of exposure, and the extent and pattern of exposure

to the agent. The task of risk assessment is to identify agents whose toxicity

is a health threat to specified subpopulations, given exposure or dosage at

specified levels, and to estimate the likely extent of exposure (dosage) of

those subpopulations. Quantitative risk assessment then often presents its

conclusions in simple numerical form. The stark form of the numerical

statements typically quoted in the news media provokes concern by the general

public, and skepticism by scientists who are aware of the various inferential

difficulties encountered in obtaining those numbers; see Wall Street Journal,
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August 6, 1992, and also Freedman and Zeisel (1988) . Nevertheless, attempts to

quantify suitably defined risks will be intensively sought in a Continuing

attempt to rationalize and communicate, and in particular to assess the

effects of both modifying pollutant introduction into the environment, and of

environmental remediation. Problems of cost-effective risk reduction and of

wise resource allocation are of great interest and concern; see The Economist

(1992), and Keunreuther (1991) for more on the economics of waste and

pollution management, and the cost-effectiveness of regulations as opposed to

taxes on polluting technologies.

Efforts to improve the quality and credibility of risk assessment results

have taken several forms. One is to clearly express the current state of

scientific knowledge concerning cancer initiation mechanisms; see Hart et al.

(1986) for example. The Hart committee's summary is in the form of 31

principles that address mechanisms of carcinogenesis, tests of cancer

induction, epidemiology, exposure assessment, and risk assessment. The general

multi-stage nature of the cancer development process has been recognized as

the first principle derived from the mechanisms of carcinogenesis in the above

review, and has been incorporated into the biologically-based pharmacodynamic

models described in Section 5.

Assessment of human response to low doses of possibly toxic agents, alone

or in combination, is an important regulatory issue. Realistic estimates of

exposures to hazardous agents experienced by human beings in real-world

conditions are often comparatively low, if protracted. Furthermore, exposure

to chemical toxicants in addition to normal background exposures may well be

at a comparatively low level. However, available experimental results with
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laboratory animals are typically at a relatively high dose level, i.e. near to

a maximum tolerable dose for the species or somewhat below. The problem of

extrapolation from such laboratory results to the low values of risk-

assessment interest poses difficult questions that have not been totally

satisfactorily addressed in many cases.

For example, interest has focused on the possible existence of a

threshold dose, a concentration below which a particular toxic agent would

have zero response. The position of the Hart committee is expressed in its

principle 3: wAt the present state of knowledge, mechanistic considerations

such as DNA repair and other biological responses, in general, do not prove

the existence of, the absence of, or the location of a threshold for

carcinogenesis .

"

Low-dose threshold phenomena must be experimentally investigated by

actually submitting sets of experimental animals to a sequence of lower and

lower doses, observing the numbers that respond, and interpreting the dose-

response trend. Recent experimental work investigates the dose-response

relationship of N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA)

and the development of esophageal and liver cancer, and other types as well.

In this study, Peto et al . (1991a, 1991b), a large number, 4080, of

Colworth/Wistar rats were given varying, but in particular low, drinking-water

doses of the above agents, and the incidence of neoplasms, e.g. in the liver,

was noted. Conclusion: at low doses the fraction of animals exhibiting

lifetime neoplasms was nearly proportional to dose, "with no indication of any

^threshold' .

"
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In another very recent study, Portier et al. (1992) investigated the

response to dioxin, 2, 3, 7, 8-TCDD, administered regularly (biweekly) after DEN

initiation, of female Sprague-Dawley rats. The response was taken to be

concentration of a dioxin-mediated protein in the liver. This concentration

was predicted using two biologically-plausible mathematical models, an

"additive" and an "independent" version. The additive model was interpreted to

fit study data better than the "independent" model, but both fit adequately,

and in neither case was there strong evidence of a threshold or strongly

sigmoidal non-linear response. From a policy viewpoint this finding is

interpreted to mean that safe exposure levels are lower than would be the case

if a threshold were demonstrable.

The Portier et al. (1992) study assesses the uncertainty associated with

its inferences by use of the re-sampling or "bootstrapping" methodology

referred to earlier; see Efron and Tibshirani (1986) . In Peto et al. (1991b) a

formal two-parameter Weibull model is fitted but no uncertainty statements

seem to be made about parameter estimates or extrapolated low-dose responses;

perhaps this omission merely reflects the authors' skepticism concerning the

parametric models' validity at truly low doses.

Conventional statistical attention to random sampling uncertainty, e.g.

as addressed by bootstrapping, largely ignores the effect of model

uncertainty. However, concern with interest and attention to this feature of

much quantitative risk assessment is naturally evident. Note that an ultimate

objective often is to provide credible and defensible cross-species "mouse to

man" extrapolations of the effect of suspected toxins or carcinogens. It seems

to be generally agreed that it is reasonable to regard "chemicals for which
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there is sufficient evidence of carcinogenicity in animals as if they

presented a carcinogenic risk to humans," see Hart et al. (1986), principle 8.

However, this statement is vague and there are difficulties with its

quantitative and qualitative interpretation; see Freedman and Zeisel (1988)

and accompanying (discordant) discussion. See also Crouch and Wilson (1979),

and Crouch, Wilson, and Zeise (1987) who have tried to show a statistical

association between mouse and rat response; the reality of that association

has been questioned by D. Freedman (Stanford statistics colloquium, 1992)

.

More recently Talcott (1992) has pointed out the many places in an

environmental risk assessment that are vulnerable to uncertainties, and

recommends systematic attention to these so as to limit the use of arbitrary

conservative assumptions and safety factors.

In summary, quantitative risk analysis based on models used for

extrapolation of animal experiment dose responses to other species, notably

humans, is demonstrably still somewhat inexact. The recognition of this fact

has stimulated further research on the fundamental biological phenomena, and

consequently more attention to development of mathematical models faithful to

that of phenomena. Such work demands, and stimulates, fruitful interplay

between representatives of different scientific disciplines. Issues of

international, national, and local economics stimulate the acquisition of

sound information on the risks potentially associated with exposures to

substances produced by our technologies, so that cost-effective choices can be

knowledgeably made.
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7 . EPIDEMIOLOGIC CASE STUDIES

In this concluding section we review approaches taken to assessing

potential human risk from contaminated water in two different areas of the

United States: Woburn, Massachusetts, and Battle Creek, Michigan. The

discussion points up the difficulties of such epidemiological studies.

Uncertainties include imperfect knowledge concerning exposure, and dose-

response relationships when doses are chronic and to several toxic compounds

when also many routes of entry and responses are possible. Nevertheless,

serious attempts at quantitative assessments are valuable in that they focus

energy on specific issues and questions, and on the revealed deficiencies in

data and theory that are candidates for improvement. Recognition of sources of

uncertainty in assessments also contributes to better understanding of the

value of these assessments, and stimulates efforts to reduce and quantify

uncertainties

.

Case 1: The Woburn Hell Hater Case (Lagakos, et al . , 1986)

We summarize and discuss the model-based statistical analysis of a water-

associated ecotoxicity situation; Lagakos, et al . (1986). To summarize: in

1979 it was discovered that two out of eight water wells servicing Hoburn,

Massachusetts, were contaminated with various organics: trichloroethylene,

tetrachloroethylene, chloroform, tricholorotrif luoroethane, and dichloro-

ethylene. Groundwater tests under eastern Hoburn, where the two implicated

wells (designated G and H) were located, revealed EPA-priority pollutants. The

wells were closed in 1979. Subsequent studies by the Massachusetts Department

of Public Health revealed a cancer mortality rate for Hoburn that was

significantly higher than that for the state and the six adjacent communities.
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Woburn's childhood leukemia rate appeared to be elevated for the 1969-1979

period: 12 cases were diagnosed when 5.3 were expected (p-value 0.008).

Lagakos et al. obtained data and performed statistical analyses to assess

possible association between access to water from wells G and H and incidence

rate of childhood leukemia. They also attempted to relate such water

consumption to adverse pregnancy outcomes and childhood disorders; their logic

was that the latter health effects are of shorter latency than leukemia and

thus may be more sensitive indicators than is leukemia incidence.

The data that were analyzed statistically consisted first of 20 cases of

childhood leukemia diagnosed in Woburn over roughly the G and H pumps' active

period (1964-19ft3> . Exposure to G and H water was scored by year and

cumulatively, according to the residence history. A telephone sample survey

was conducted in 1982 in order to obtain information on incidence of APO/CD

during the period 1960-1982, along with mother's residence history. Care was

taken in the survey, but since it jnanaged to contact something like 50% of

Woburn residents with listed phones, and since the many types of adverse

responses were grouped into categories, the use of the survey data was

criticized by some discussants of the paper.

Statistical analysis of the 20 leukemia cases was conducted with the aid

of a statistical model, the so-called Cox failure time regression model; Cox

1972. That model relates the age-dependent rate of early occurrence of

leukemia to exposure. Strength of association is measured by the degree of

positivity of a regression parameter, which turned out to be positive with

moderate statistical significance. A logistic regression approach when applied

35



to data on pregnancy outcomes and childhood disorders also indicated an

association of some of these responses and access to G, H water.

Lagakos et al. carefully attempted to check for survey biases, such as

could be caused by overreporting among those exposed to G, H, and

underreporting among those unexposed; they concluded that these biases were

negligible. (Note: this effort did not satisfy at least one discussant of the

paper.) The effect of inexact exposure estimation was also assessed by redoing

calculations based on a coarser partitioning of G, H exposure levels than that

first used. Such a step resembles classical errors-in-variables strategies,

e.g. the Wald grouping method, cf. Fuller (1987). The procedure resulted in

the same significant associations as previously detected.

In summary, inference concerning risk of leukemia and CD/APO was

conducted using data on exposure to Woburn wells G and H and mathematical

models deemed appropriate for such investigation. The investigations concluded

that their analysis, while showing positive association, did not explain the

entirety of Woburn' s leukemia excess. Little evidence was found of increase in

spontaneous abortion or low birth weight, with increased 6, H exposure, but

perinatal/stillbirth rate was up, as were (strongly) eye/ear and

chromosomal/oral cleft anomalies. Other positive associations were found as

well.

Six discussants commented upon the reported study. All were free in

pointing out deficiencies, many of which were acknowledged by the authors.

Prominent among the deficiencies noted were (apparently unavoidable)

difficulties with exposure assessment and the survey data, and the possibility

of overinterpretation of positive indications of association because of the
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"multiple testing" phenomenon; also, some doubt was cast on the accuracy of

approximations used to calculate p-values, and to the sensitivity of the

latter values to deletion/addition of single observations. All such valid

comments contribute to a better understanding of the difficulties of

conducting convincing studies of environmental risk; their recognition

presumably will lead to improvements in future studies.

Case 2: Battle Creek Health Study (Freni and Bloomer, 1988)

In 1981 an aquifer servicing the Battle Creek, Michigan, area was found

to be contaminated with various volatile organic chemicals (VOCs) . The wells

were subsequently closed. Groundwater contamination with the same VOCs was

later detected in Dowagiac and in Springfield, adjacent to Battle Creek. The

Michigan Department of Public Health proceeded to conduct a comprehensive

epidemiologic study of the potential health effect of the contaminated

drinking water; see Freni and Bloomer (1988); this is called the Battle Creek

Health Study.

An initial literature review indicated that adverse effects of chronic

exposure to particular VOCs had been observed only at levels much higher than

those discovered in the Battle Creek drinking water. However, this information

did not extend to situations involving multiroute exposure to multiple VOCs.

Consequently, a retrospective cohort study was designed: a cohort of exposed

people was compared to a reference or control cohort of unexposed people with

respect to incidence of diseases or other health parameters during a follow-up

period. The reference cohort was from neighborhoods comparable to the

contaminated areas with respect to age, size, and value of dwellings; the

individuals selected for both cohorts were comparable with respect to age and
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sex. There were some refusals to participate (about 20% in exposed, and 30% in

reference, cohorts), a common occurrence in such studies that is potentially

biasing.

The quality of raw data on extent of exposure of the exposed cohort was

"extremely poor", according to Freni and Bloomer (1988) . It was necessary to

construct a mathematical model to infer from the results of available well-

monitoring data the time of start of residential well contamination and the

total accumulated exposure (TAEVOC) of individuals; these latter estimates

were supplemented by interview data, and when possible converted to inferred

dosage in drinking water (TAEDOSE) ; estimated dosages varied considerably

across individuals. As was true in the Woburn Study, dosage levels were

indirect, and hence uncertain, although the Battle Creek Study devoted much

thought and energy to quantifying individual exposure by drinking water but

also from showering and bathing.

Health data were obtained from several sources: interviews, in which

subjects were asked to recall diseases experienced in the past, and their date

of diagnosis; medical records; clinical examination for subjects at least five

years old; mortality and hospital discharge rates. Efforts to obtain a variety

of possibly informative data seemed greater than those made in the Woburn

Study.

It was judged likely that an interview bias existed: those in exposed

areas, who became aware of possible exposure through the media, by word of

mouth, or when interviewed, may recall more disease than others. However,

analysis of the uncorrected 1976-1980 mortality data for Battle Creek is

reported to have shown that the city had "significantly higher" rates for
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eight of the state's ten leading causes of death; these include heart disease

and cancer. The magnitudes of the effects are not reported.

Statistical models were brought into play to analyze the above data. The

simplest and most traditional of these is the odds ratio, defined in terms of

these numbers: for specified risk factor, R, and specified disease (or

indicator thereof) , D, denote

nDR " Number exposed to risk factor R that exhibit disease D;

nt>R m Number exposed to risk factor R that do not exhibit disease D;

nDR " Number not exposed to risk factor R that exhibit disease D;

n
t>R

m Number not exposed to risk factor R that do not exhibit disease D.

Then the odds ratio (for D, given R) is computed as

/ v _ Odds for D, given R (
nDR/nt>R)

Odds for D, given not-J?
{
nDRlnt>R)

For example: Suppose 250 individuals (= study participants) consumed water

with high VOC concentration (risk factor R) ; of these 50 » ripR exhibited liver

disease. A reference or control group of 500 individuals consumed water with

low or normal VOC concentration; of these 10 nD^ exhibited liver disease.

Then the odds ratio for liver disease, D, given the high-VOC risk factor, R,

is
50/200 ,_ ,OR = —

-

= 12.3,
10/4 90

an attention-getting number that strongly suggests an association of

liver disease, D, with high-VOC risk factor, R. (No such levels were found in

the Battle Creek Study.) A numerical value close to unity indicates neutrality

so far as effect of the risk factor goes. A numerical factor less than unity

suggests that absence of the specified risk factor is associated with greater
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disease prevalence in the sample analyzed. This effect nay be caused by the

action of an unsuspected additional risk factor in the reference group. The

odds ratio statistic is very frequently employed in the Battle Creek Study,

often adjusted for estimated exposure or dosage by stratification. In such

cases the numbers in the various categories are small, so the sampling

variability is large. As a result, only a few of the calculated odds ratios

reach statistical significance at the (modest) level p 0.10.

Another frequently-utilized statistical measure of effect was the rate

ratio or relative risk; in words,

, . Number exhibiting D per person-month exposed to R
RR^w/ Rj — ^"^—"^——————^^^—

Number exhibiting D per person-month of not-J?

This index controls broadly for exposure.

Statistical modeling of realistically individually variable exposure or

dosage responses were conducted by multivariable regression analysis,

particularly the proportional hazard or Cox model, see Cox (1972), and the

logistic regression model, Cox and Oakes (1984). These models were also

utilized in the Woburn Study; both nay now be fitted to data using standard

package computer programs, as may a variety of other relevant generalized

linear models; see McCullagh and Nelder (1983); the latter techniques were

available in 1986, and their application to the Battle Creek data could be of

interest.

The statistical procedures carried out on the data involved the above

models when viewed as appropriate, plus others. The simple general conclusion

was that no positive or significant (below the p 0.1 level) relationship

between exposure to VOCs and adverse effects on health. In fact, a weak
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reverse effect was noted: the data suggest an excess of abnormal response

values in the reference or control cohort. This effect has not been explained.

Discussion

Despite careful attempts to control the relevance and quality of the data

used, the associated health effects with contamination levels in both Woburn

and Battle Creek appeared small. Furthermore, they often did not reach

conventional levels of statistical significance.

Such outcomes may well have several explanations. One is that, despite

considerable care, the data obtainable retrospectively on individual dosages

and responses were simply inadequate to allow the detection of rather weak and

individual-specific effects. Small effects are difficult to detect when

exposed populations are homogeneous, but the samples studied may not have been

homogeneous enough in response to the "contaminant treatment" level under

investigation, to reveal the latter' s influence over and above that of the

prevailing background. Furthermore, the more sophisticated regression models

used do not take account of the fact that data on dosage and health-effect

responses are surrogate, in that they represent the variation of causal

variables indirectly, in broad error-afflicted summary, and they are not

designed to reflect the variation of individual responses to contaminants and

background.

To make further progress in quantitative epidemiologic studies it appears

necessary to obtain increasingly pertinent and inclusive dose and response

data, where guidance for what data are needed will derive from improved

understanding of biological response to chemical intruders. That same
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understanding will permit the construction of models that can better be relied

upon to predict health effects in a trustworthy manner.

8 . SUMMARY AND CONCLUSIONS

This chapter furnishes an overview of a selection of the many

mathematical models used in representing the flow, transformation, and fate of

toxic substances in the environment, and eventually within organisms such as

the human body. The presentation is in no way encyclopedic; for example, there

is no discussion of air pollution generation, transport, and human exposure, a

significant omission. References are provided to repositories of models of

transport and exposure. The functionality of dose-response models,

particularly for cancer, is described in some literary detail, without

mathematical elaboration; references will allow interested readers access to

details. Such mechanistic models are not now widely available at a fundamental

level for many other health effects, a deficiency which appears to offer

multifold research opportunities.

The users of models must face the task of linking or integration of

models of various stages, from pollution generation, through transport,

dispersion, and transformation, to eventual exposure and dosage of an organism

to produce various health effects. The literature on methodology for this

important linkage problem, with its attendant uncertainties, appears to be

minuscule; see, however, Smith in Chapter 5 of Bloom and Poskitt (1988) who

examine DNA adduct formation caused by ethylene oxide. This work emphasizes

mechanistic differential equation tools at the expense of attempts to

characterize inter-individual, and other, variability by stochastic models. It

provides a start on the road towards credible interspecies extrapolation.
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Through the consideration of two case studies concerning health effects

or risks associated with contaminated drinking water, we appreciate the

difficulty of establishing a causal link between presence of an elevated

contaminant level and strong evidence of corresponding health effects. The

credible reconstruction of historical exposure from available data is seen to

be essential, but difficult and fraught with often unquantified uncertainty.

Additionally, the variable susceptibility of those exposed can only add to the

difficulty of linkage. This area appears to be a prime candidate for future

research. For example, data on the response to toxic chemical agents in

drinking water of individuals who are suffering from various forms of disease

might well reveal magnified health effects. To learn this, the appropriate

data must be available, and be analyzed. Eventually, after the physical

transport and biological mechanisms are well enough understood, the impact of

multiple results may be usefully anticipated and appropriate steps taken. More

research appears necessary before this is reliably possible.

In various branches of science and technology it has been found useful to

consider together, and possibly to judiciously combine, data on similar

situations so as to achieve stronger quantitative estimates of effects; see

Gaver et al. (1992). In medical and social science circles in the U.S. this

activity is frequently called meta analysis; the term overviews is preferred

by the prominent British biostatistician R. Peto. It appears likely that the

techniques of this field, notably but not exclusively hierarchical Bayesian

analysis, will find a place in the toolkits of those who analyze environmental

transport and fate, exposure, and dose-response relations and data. The basic

notion is that at least certain classes of situations, such as certain
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Superfund sites eligible for cleanup, may have features in common that can be

invoked to strengthen individual assessments of cleanup status assessment, for

example. This would involve suitably combining (not uncritical pooling) of

data from several similar sites with that of a specific site of interest so as

to improve the estimate of its condition after a particular effort has been

made. Likewise, assessments of health effects of certain pollutants that have

been conducted at different times or places might be profitably brought

together in an overall analysis. Such actions have precedent, but do not now

appear to be commonly employed. For a status report on meta analysis in

various fields, see Gaver, et al. (1992)

.

As was stated initially, those who make quantitative studies of

environmental risk are essentially never able to conduct planned or designed

experiments on human subjects. Consequently they are confronted with

observational data that potentially contain biasing and confounding factors. A

good account of effective statistical analyses of such difficult data is given

by Cochran (1983) (edited and completed by L. Moses and F. Mosteller) . This

material should not be ignored by those health-effects analysts attempting to

draw conclusions from environmental and observed response data. In particular,

the careful use of modern nonlinear regression techniques in company with

appropriately biologically motivated mechanistic models is to be encouraged in

order to adjust for measured covariates such as age, gender, weight, or others

while also properly modeling the biological phenomena. Recent work by

Piegorsch and Casella (1992) is in this direction; they consider mouse

genotoxicity data in the context of a hierarchical logistic or binomial model.

See also the references in Sections 4, 5, and 6 above.
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The aim of this chapter has been to describe some of the ways in which

quantitative modeling and analytical techniques have been applied in the

environmental areas of concern in this book. It is hoped that the result will

be stimulating and helpful, especially to those new to this approach.
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